Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Medical Sciences Journal ; (4): 97-108, 2023.
Artigo em Inglês | WPRIM | ID: wpr-981588

RESUMO

Objective To investigate the effects of propofol and sevoflurane on neurological recovery of traumatic brain injury (TBI) patients in the early postoperative stage.Methods We retrospectively analyzed the clinical data of TBI patients who underwent craniotomy or decompressive craniectomy. Generalized additive mixed model (GAMM) was used to analyze effects of propofol and sevoflurane on Glasgow Coma Scale (GCS) on postoperative days 1, 3, and 7. Multivariate regression analysis was used to analyze effects of the two anesthetics on Glasgow Outcome Scale (GOS) at discharge.Results A total of 340 TBI patients were enrolled in this study. There were 110 TBI patients who underwent craniotomy including 75 in the propofol group and 35 in the sevoflurane group, and 134 patients who underwent decompressive craniectomy including 63 in the propofol group and 71 in the sevoflurane group. It showed no significant difference in GCS at admission between the propofol and the sevoflurane groups among craniotomy patients (β = 0.75, 95%CI: -0.55 to 2.05, P = 0.260). However, elevation in GCS from baseline was 1.73 points (95%CI: -2.81 to -0.66, P = 0.002) less in the sevoflurane group than that in the propofol group on postoperative day 1, 2.03 points (95%CI: -3.14 to -0.91, P < 0.001) less on day 3, and 1.31 points (95%CI: -2.43 to -0.19, P = 0.022) less on day 7. The risk of unfavorable GOS (GOS 1, 2, and 3) at discharge was higher in the sevoflurane group (OR = 4.93, 95%CI: 1.05 to 23.03, P = 0.043). No significant difference was observed among two-group decompressive craniectomy patients in GCS and GOS.Conclusions Compared to propofol, sevoflurane was associated with worse neurological recovery during the hospital stay in TBI patients undergoing craniotomy. This difference was not detected in TBI patients undergoing decompressive craniectomy.

2.
Chinese Journal of Traumatology ; (6): 5-10, 2021.
Artigo em Inglês | WPRIM | ID: wpr-879669

RESUMO

Traumatic brain injury (TBI), a growing public health problem, is a leading cause of death and disability worldwide, although its prevention measures and clinical cares are substantially improved. Increasing evidence shows that TBI may increase the risk of mood disorders and neurodegenerative diseases, including Alzheimer's disease (AD). However, the complex relationship between TBI and AD remains elusive. Metabolic dysfunction has been the common pathology in both TBI and AD. On the one hand, TBI perturbs the glucose metabolism of the brain, and causes energy crisis and subsequent hyperglycolysis. On the other hand, glucose deprivation promotes amyloidogenesis via β-site APP cleaving enzyme-1 dependent mechanism, and triggers tau pathology and synaptic function. Recent findings suggest that TBI might facilitate Alzheimer's pathogenesis by altering metabolism, which provides clues to metabolic link between TBI and AD. In this review, we will explore how TBI-induced metabolic changes contribute to the development of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA